
Journal of Statistical Physics, Iiol. 82, Nos. 5/6, 1996

The Computational Complexity of Generating
Random Fractals

Jonathan Machta I and R a y m o n d Greenlaw 2

Received April 4, 1995; final August 29, 1995

We examine a number of models that generate random fractals. The models are
studied using the tools of computational complexity theory from the perspective
of parallel computation. Diffusion-limited aggregation and several widely used
algorithms for equilibrating the Ising model are shown to be highly sequential;
it is unlikely they can be simulated efficiently in parallel. This is in contrast to
Mandelbrot percolation, which can be simulated in constant parallel time. Our
research helps shed light on the intrinsic complexity of these models relative to
each other and to different growth processes that have been recently studied
using complexity theory. In addition, the results may serve as a guide to simula-
tion physics.

KEY WORDS: Cluster algorithms; computational complexity; diffusion-
limited aggregation; Ising model; Metropolis algorithm; P-completeness.

1. I N T R O D U C T I O N

Random fractals are a major focus of investigation in statistical physics.
Such patterns occur at equil ibrium critical points and arise through a
variety of nonequi l ibr ium dynamical processes. A number of models
generate random fractals, including diffusion-limited aggregation (DLA)
and the Ising model at criticality. These models have been extensively
studied by computer simulation methods and, in some sense, they are
defined by the algorithms that are used to simulate them. In this paper we
examine such defining algorithms from the viewpoint of the theory of
computational" complexity.

Department of Physics and Astronomy, University of Massachusetts, Amherst,
Massachusetts 01003. E-mail: machta@phast.umass.edu.

-" Department of Computer Science, University of New Hampshire, Durham, New Hampshire
03824. E-mail: greenlaw@cs.unh.edu.

1299

0022-4715/96/0300-1299509.50/0 �9 1996 Plenum Publishing Corporation

1300 Machta and Greenlaw

Computational complexity is the branch of theoretical computer
science that seeks to quantify the resources required to solve problems. One
of the main achievements of complexity theory is the identification of a
hierarchy of complexity classes. The classes differ with respect to how the
various resources, such as time, space, and processors, scale in proportion
to problem size. For example, does the running time increase as a
logarithmic, power, or exponential function of the problem size? Our
emphasis is on parallel computational complexity. We seek to answer the
following question: how do the number of processors and the amount of
time required to simulate a system on a massively parallel computer
increase with the system size?

The motivation for this work is two-fold. First, computational com-
plexity may serve as a guide to simulation physics. With the growing
availability of massively parallel computers, it is important to investigate
models from the perspective of parallel complexity. Another, perhaps more
significant, motivation is to provide an alternative characterization of these
models. An enormous amount of effort has gone into characterizing the
morphology of fractal patterns via critical exponents, fractal and multifrac-
tal dimensions, scaling functions, and so on. Such characterizations fail to
adequately distinguish these models from the standpoint of what can be
described intuitively as complexity. We believe that the intuitive notion of
physical complexity is at least partially captured by the computational
complexity measure of parallel time (with the number of processors
appropriately restricted). This idea, in a slightly different form, has been
previously proposed by Bennett. ~1)

In a nutshell, the idea is that simple objects can be generated quickly,
while complex objects require a long history for their formation. We
illustrate this by comparing two random fractals. The first is Mandelbrot
percolation, ~21 an example of which is depicted in Fig. 1. We show that
Mandelbrot patterns require only constant parallel time to generate.
Though they are fractals, there is very little interesting morphology; the
structure on each length scale is independent of the structure on other
length scales. Many properties of Mandelbrot percolation are susceptible to
rigorous analysis. ~ The second example is DLA, In~ which generates fractal
patterns like those shown in Fig. 2. DLA patterns are produced by a highly
sequential algorithm that seems to require polynomial (in the size of the
aggregate) parallel time. DLA patterns reflect a subtle interplay of random-
ness and structure on many length scales. DLA has remained largely refrac-
tory to theoretical analysis. Whether or not one accepts a definition of
physical complexity in terms of computational complexity, it is interesting
that a variety of models in statistical physics can be sharply separated from
one another by a fundamental new yardstick.

Computational Complexity of Generating Random Fractals 1301

Our research extends a study of the complexity of a number of growth
models. Ref. 5 is concerned with a fluid invasion model that generates
clusters with the same statistics as DLA. This model is shown to be
inherently sequential (technically, P-complete) and so it is unlikely that it
can be efficiently simulated in parallel. Here we show that the original ran-
dom walk dynamics for generating DLA clusters is also inherently sequen-
tial. In ref. 6 we considered a number of other growth models--invasion
percolation, Eden growth, ballistic deposition, and solid-on-solid
growth--and showed that all of these models can be efficiently simulated
in parallel. The fractal patterns associated with them can be generated on
a parallel computer in a time that scales logarithmically in the system size
while using a reasonable number of processors. Although each of these
models is less complex than DLA, each is more complex than Mandelbrot
percolation.

Other applications of computational complexity theory to statistical
physics have focused mainly on the existence of polynomial time sequential
algorithms. For example, the problems of finding the exact ground states
Of spin glasses tT) and computing self-avoiding walks in a random environ-
ments tS) have been shown to be computationally intractable (technically,
NP-complete). On the other hand, a polynomial time algorithm exists for
the random field Ising model, tg) There is also work that establishes the
complexity of finding the partition function of the Ising model and related
spin models on arbitrary lattices either exactly tt~ or approximately using
Monte Carlo methods. (~)

In Section 2 we give an introduction to computational complexity
theory. A reader familiar with this field may want to skim this section. In
Section 3 we investigate the computational complexity of the following
systems: Mandelbrot percolation, DLA, Metropolis dynamics for the Ising
model, Wolff dynamics for the Ising model, and Swendsen-Wang dynamics
for the Ising model. Section 4 is devoted to a discussion of the results.

2. C O M P U T A T I O N A L C O M P L E X I T Y B A C K G R O U N D

In this section we provide an introduction to computational com-
plexity theory. The reader can find further information and details in a
number of texts!~2" ~3) and monographs. ~ 14-16)

2.1. The Parallel Random Access Mach ine

The theoretical model we focus on is the parallel random access
machine or P-RAM. It is the most commonly used model in parallel

1302 Machta and Greenlaw

computation. We describe the P-RAM and then relate its resource usage to
the corresponding measures for actual parallel computers.

The P-RAM consists of a number of processors each with local
memory and having access to a common global random access memory.
All processors run the same program but are distinguished by nonnegative
integer labels so that the processors may operate on their own data or skip
instructions. Input to the machine is placed in designated, consecutive
global memory locations as is output. The P-RAM is in the class of single-
instruction multiple-data-stream (SIMD) models. The processors run syn-
chronously and in each time step a single random access machhTe (RAM)
instruction (~7) or a global memory access instruction is executed by a sub-
set of the processors. Examples of typical instructions are "write the con-
tents of the accumulator to memory location a" and "add the contents of
the accumulator to the contents of register a, placing the sum in the
accumulator."

Although many processors may read the same memory location at a
particular time, difficulties arise if multiple processors attempt to write to
the same location. One frequently used arbitration scheme is the con-
current write model in which processors are assigned a write priority.
When more than one processor attempts to write to a given location, the
processor with the highest priority succeeds. This model is known as the
PRIORITY CRCW P-RAM. (18) We adopt this model and simply refer to
it as the P-RAM.

In the P-RAM model any processor can access any global memory
location in one time step; the model allows unlimited parallelism. For this
reason the P-RAM serves as a convenient model for designing and analyz-
ing parallel algorithms, for studying processor and time requirements, and
for proving lower bounds. Although the P-RAM is overly simplistic in its
assumptions, it can nevertheless be simulated on models of parallel
computation with more restricted connectivity such as the hypercube.
These simulations usually have a slowdown of a logarithmic factor and
require roughly the same amount of hardware as the corresponding
P-RAM computations; see ref. 19 for additional details and references.

As an example of the utility of parallelism, consider the task of com-
puting the parity of n bits. Parity is the problem of determining whether
there is an even number of l's in the input. Initially, the n bits are stored
in global memory locations 1,..., n. A P-RAM program that computes
parity uses n/2 processors numbered 1 n/2 to add 17/2 pairs of bits
(modulo 2) in parallel. That is, processor 1 adds the contents of locations
1 and 2, storing the result (modulo 2) in location I, processor 2 adds loca-
tions 3 and 4, storing the result (modulo 2) in location 2, and so on.
Similarly, the resulting 17/2 values are added pairwise (modulo 2) by n/4

Computational Complexity of Generating Random Fractals 1303

processors. This process is repeated until, after [-log2n-] time steps, parity
is computed. Notice that in this case the algorithm's output is placed in
global memory cell 1 by processor number 1. The algorithm runs in
O(log n) tim6 using n/2 processors.

2.2. Complex i ty Classes

The primary question addressed by computational complexity theory
is how the difficulty of a computation scales with the size of the problem
instance. Complexity theory usually focuses on decision problems. An
instance of a decision problem is a string of bits encoding the problem; the
solution is simply a 1 or 0. If the solution for input x is 1, we say that x
is "accepted" and otherwise x is "rejected." In this sense, a decision
problem is defined by its set of accepted strings. The problem size, n = Ixl,
is the length of the encoded input. A simple example involving the parity
problem discussed above is as follows:

Parity

Given: b,,..., b,,, where bi ~ {0, 1}.

Problem: Do an even number of the bi's have value 1?

In this case the input is easily encoded using exactly n bits. The output
is a 1 if there are an even number of bi's with value 1, and 0 otherwise.
It is easy to see that the answer may be found on a single processor com-
puter (such as a RAM or more familiar desktop computer) with a running
time that scales linearly in n by simply scanning through the bits and
maintaining their sum modulo 2.

We now define several important complexity classes for parallel
computation.

Def in i t ion 2.1.
�9 The class AC ~ consists of those decision problems that can be

solved on a P-RAM in O(1) (constant) time using n ~ (polynomial) pro-
cessors.

�9 The class NC consists of those decision problems that can be solved
on a P-RAM in (log n)~ (polylogarithmic) time using n ~ processors.

�9 The class P (polynomial time) consists of those decision problems
that can be solved on a P-RAM in n ~ time using n ~ processors.

It is easy to see that AC~ NC_c p. It is known that A C ~ NC and,
while no proof yet exists, it is widely believed that NC :# P. The classes in
Definition 2.1 are robust in the sense that they may be equivalently defined
with respect to several different computation models; ~15~ they are not tied
to the P-RAM model of parallel computation.

1304 Machta and Greenlaw

All of the problems considered in this paper are in the class P. It is
generally accepted that problems in the class P have feasible sequential
time solutions. The question we pose for the fractal models is whether a
polynomial time problem can be qualitatively sped up via massive
parallelism. For the parity example, the sequential solution mentioned
takes O(n) time. The parallel solution outlined previously shows a P-RAM
can solve this problem in O(log n) time using n/2 processors. Thus, the
parity problem is in the class NC and a qualitative speedup is achieved in
the parallel setting. On the other hand, parity is not in AC~ see ref. 18.

We will use the terminology that problems in NC (and thus AC ~ are
"efficiently solved in parallel," since we obtain a qualitative speedup solving
these problems in parallel. On the other hand, problems that are in P but
likely not in NC are called "inherently sequential." The running time for
solving an inherently sequential problem cannot be decreased from polyno-
mial to polylogarithmic using a polynomial number of processors. Below
we identify a class of problems that are in P but not NC (unless it happens
that NC = P).

In order to proceed, we need to be able to relate problems to one
another. This is accomplished via the notion of reduction. The idea is
similar to a commonly used programming practice. To solve one problem,
we often use a subroutine call to a different problem. In this sense we
reduce our original problem to the one involved in the subroutine call.
More formally, we have the following.

Def in i t ion 2.2. Let n = Ixl. (T h r o u g h o u t , Ixl denotes the length of
string x and a decision problem D is represented as a set of accepted
strings.) Decision problem D i is NC many-one reducible or NC reducible
(~() to decision problem D2 if there exists a function f such that xeD~ if
and only iff(x)eD,_, a n d f c a n be computed on a P-RAM in (logn) ~
time using n ~ processors.

If D~ ~(D_,, then D~ is "no harder" than D 2. This is because we could
solve D~ using an algorithm for D_,, where the input to D 2 is produced by
an efficient calculation involving f. We can also compare a given problem
to an entire complexity class, via the concept of "completeness."

Def in i t ion 2.3. A decision problem D is P-complete if (1) D e P
and (2) for all D' ~ P, D' ~(D.

The P-complete problems are therefore the hardest problems in P.
Based on these definitions, the following theorem is straightforward to
obtain.

Computational Complexity of Generating Random Fractals 1305

T h e o r e m 2.4. If any P-complete problem is in NC then NC = P.

Thus, if the well-known conjecture in computer science that NC :~ P
holds (and there is lots of evidence supporting this conjecture, It4~ P-com-
plete problems are inherently sequential.

is a transitive relation. That is, if D~ <(D2 and D2-<(D3, then
DI -< D3. Therefore, if some problem D' is shown to be P-complete and
D'-< D, then D must be as difficult to solve as D'. In this case we say D
is P-hard. If D is also in P, it is P-complete as well. Using transitive reduc-
tions, a large number of P-complete problems have been identified and no
efficient parallel solution has been found for any of them, providing
evidence for the conjecture. In this paper we will prove that several
problems from statistical physics are P-complete by showing that known
P-complete problems reduce to them.

The fundamental P-complete problem is the circuit value problem
(CVP); it is phrased in terms of Boolean circuits. Before describing CVP,
we give an informal description of circuits. A Boolean circuit is a collection
of connected NOT, AND, and OR gates. NOT gates have one input and multi-
ple outputs; AND and OR gates have multiple inputs and multiple outputs.
The fan-in (fan-out)is the number of inputs (outputs) of a gate. The con-
nection of the gates is "feedforward." That is, it must be possible to number
the gates so that the outputs of a gate are connected to the inputs of gates
with higher numbers. Such a numbering is called a topological numbering
and we say the gates are in topological order. In calculating outputs from
inputs each gate computes its Boolean function just once. Sometimes gates
other than NOT, AND, and OR are considered. The size of a circuit is defined
as the number of gates. The depth is the longest path from an input to an
output.

Circuit Va lue Problem (CVP)

Given: A compact 3 encoding ~ of a Boolean circuit together with its
inputs Xl x,,, and a designated output gate g.

Problem: Does g evaluate to 1 on input xl x,,?

Theorem 2.5. The circuit value problem is P-complete. '2~

Numerou~ variants of CVP are P-complete/~4, In NOR CVP the circuit
consists entirely of NOR gates with fan-in and fan-out two. NOR CVP
without fan-out restrictions is also P-complete for planar circuits; this ver-
sion is called planar NOR CVP. In monotone CVP the circuit is composed

s A compact encoding of a circuit is polynomial in the circuit size.

1306 Machta and Greenlaw

of AND and OR gates (NOT gates are absent) having fan-in and fan-out two.
This problem is P-complete for arbitrary circuits but it is in NC for planar
circuits. We shall make use of planar NOR, monotone, and other restricted
variants of CVP in Section 3.

A proof that a problem D is P-complete via a reduction from CVP is
tantamount to what in other contexts has been called "computational
universality." The dynamics of hard spheres in classical mechanics (2~) and
some cellular automata rules t~4'22) have been shown to be computationally
universal. Our proofs that DLA and various Ising Monte Carlo dynamics
are P-complete depend on showing that arbitrary logical calculations can
be embedded in these dynamics.

In addition to the resources of parallel time and number of processors,
the notion of uniformity plays an important role in computations. Roughly
speaking, a uniform solution to a problem uses the "same" program for
each problem size, whereas a nonuniform solution may use a different
program for each size. For example, simulating the Ising critical point in
three dimensions using conventional Monte Carlo methods is a non-
uniform problem because the critical temperature is required as a
parameter in the algorithm. As the system size increases, the program must
contain an increasingly accurate value of the critical temperature. 4 On the
other hand, simulating DLA clusters is a uniform task since no fine tuning
of parameters is required. The same can be said for other "self-organized"
critical points such as invasion percolation. Recently, a uniform algorithm
for sampling Ising critical points has been developed, t23)

2.3. Parallel Time and Logical Depth

The P-RAM model and the complexity measures that are built from
it are in some sense unphysical because unit time is assigned to a single
read or write step. Eventually, as such a device is scaled up, the com-
munication time between processors and memory dominates the running
time and the unit-time assumption fails. Indeed, in the limit of large
systems all of the models discussed here require polynomial time to
simulate on any real-world device because all are capable of generating
random patterns with correlations on the scale of the system size. These
correlations cannot be set up without communication across the system
and this requires polynomial time.

Nonetheless, parallel time correctly identifies an important aspect of
the problem which can be called "logical depth." The logical depth is the

4 Specifically, the critical temperature must be known to accuracy L- ~/", where L is the system
size and v is the correlation length exponent.

Computational Complexity of Generating Random Fractals 1307

minimum number of logical operations that must be carried out in
sequence before a problem is solved. This concept can be made rigorous by
considering families of Boolean circuits, t~5~ A family of Boolean circuits,
one for each problem.size, can simulate a P-RAM programmed to solve a
given problem and vice versa. The definitions of the complexity classes
AC ~ NC, and P can be stated in terms of families of Boolean circuits: the
number of processors corresponds roughly to the size of the circuit (num-
ber of gates) and the parallel time roughly to the depth of the circuit
(length of the longest path from input to output). Thus, for example, a
problem is in the class NC if it can be solved by a uniform family of
Boolean circuits having polynomial size and polylogarithmic depth in the
number of inputs (the problem size).

A few comments are in order regarding the number of processors. If
only one processor is allowed, then all the problems treated here require
polynomial time. If, on the other hand, the number of processors is
unrestricted, it can be shown t24~ that all the problems discussed here are
solvable in constant P-RAM time using exponentially many processors (or
equivalently by circuit families with exponential size and constant depth)
and again the interesting distinctions based upon parallel time disappear.
Interesting results are found when polynomial parallelism is permitted.

2.4. Complexi ty of Sampling Methods

Computer scientists study decision problems, whereas computational
statistical physicists are usually concerned with sampling problems--
generating states from some equilibrium or nonequilibrium distribution.
Sampling algorithms require a supply of random numbers and produce as
output a system configuration. This configuration is described by m bits
representing the degrees of freedom of the system expressed in binary. One
can extend the ideas of complexity theory to sampling methods by intro-
ducing probabilistic P-RAMs in which each processor is equipped with a
register for generating random bits.

Instead of producing random bits dynamically, one could equivalently
produce the required random bits in advance and include them as inputs
to a deterministic calculation. In this way a sampling method is reduced to
m decision problems, one for each binary degree of freedom. An example
of such a decision problem is "Does Ising spin sj(1 <~j <~ m) have value + 1
after M iterations of the Monte Carlo procedure using random numbers
xi?" Note that these m decision problems may be run in parallel with, in
the worst case, a factor of m increase in the number of processors. There-
fore, the sampling algorithm has the same parallel time requirement up to a
constant factor as the associated decision problem.

1308 Machta and Greenlaw

In statistical physics, the problem size is conventionally identified with
the system size, the number of bits m required to specify a system con-
figuration. This differs from complexity theory, where it is the number of
bits required to state the problem that is identified as the problem size. The
following definition ensures that the two notions of problem size are com-
patible. For a given sampling method with r random inputs, o ordinary
inputs, and m outputs, we define the associated natural decision problem
as follows. The input is of length m + o + r. The first m bits represent the
degrees of freedom of the system. Of these bits exactly one is a I. The posi-
tion of the 1 specifies which degree of freedom of the system (e.g., which
Ising spin) is to be evaluated. Since the selected degree of freedom is
expressed in unary, the decision problem size is at least as great as the
system size. 5 For example, to represent the fifth out of ten degrees of
freedom our unary expression would be "0000100000." The next o bits are
the ordinary inputs to the problem expressed in a suitably compact form.
These inputs might include the size of the lattice, the temperature, the num-
ber of iterations of an elementary Monte Carlo step, and other relevant
parameters expressed in binary notation. The final r bits are the random
bits needed for the sampling method. So that the answer or other poten-
tially useful information is not built into these bits, we require that they be
interpreted as independent random variables that take the value 1 with
probability 1/2. We restrict our attention to "reasonable" sampling
methods where r is bounded by a polynomial in m.

The decision problem for a sampling method can now be studied using
conventional computational complexity theory. It must be emphasized that
the complexity of the decision problem is only an upper bound on the com-
plexity of sampling a given distribution. The reason is that the decision
problem is associated with a particular sampling method. It may be that an
alternative method leads to a less complex decision problem. In principle
we would like to know how the time, number of processors, and number
of random bits scale with m for the optimal sampling method. Unfor-
tunately, tools for studying this question have yet to be developed. Instead,
we focus on the complexity of several known sampling methods. Nonethe-
less, if the best known sampling methods are investigated and their com-
plexity is established, it is plausible that the complexity of sampling has
also been found. (Note that proving that a particular sampling method is
optimal seems to be a very difficult task.)

5 This helps ensure that the problems considered are in P and that the number of processors
used will be polynomial in the input size.

Computational Complexity of Generating Random Fractals 1309

3. COMPLEXITY OF RANDOM FRACTALS

In this section we consider the following models: Mandelbrot percola-
tion, diffusion-limited aggregation, and the Ising model. We discuss sampl-
ing methods for these systems and then study the parallel computational
complexity of the associated decision problems. Each model generates
(under some conditions) random mass f rac ta l s - - s e t s of "occupied" sites
whose number scales as a noninteger power of the lattice size.

3.1. Mandelbrot Percolation

This random fractal was first described by Mandelbrot. (2) It was
analyzed by rigorous methods in ref. 3 and was later generalized and
applied as a model of a fractal porous medium, t2s-27~ Mandelbrot percola-
tion is defined on a d-dimensional lattice. It is parametrized by a rational
retention factor Q (0 ~< Q < 1), a positive integer rescaling factor N, and
iteration number k. System configurations are described by a bit at each
lattice site. If the bit is a 1, we say the site is "occupied." For purposes of
illustration, we consider the two-dimensional version on an N* x N k square
lattice. A configuration is generated in the following way: at the ith step
(0 ~< i ~< k - 1) the lattice is completely divided into N ~ • N ~ nonoverlapping
squares and each square is independently "retained" with probability Q. If

Fig. 1. A realization of Mandelbrot percolation.

1310 Machta and Greenlaw

a square is retained, the site(s) in it are not changed. If a square is not
retained, then all of the site(s) in it are changed to unoccupied. After
k steps unoccupied regions with a wide range of sizes are typically
created. The resulting set of occupied sites is a random fractal with
limiting Hausdorf dimension, D n = 2 + (log Q)/(log N) if D H > O. A
realization of Mandelbrot percolation with N = 2 , Q = 0.9, and k = 7 is
shown in Fig. 1.

A natural decision problem associated with Mandelbrot percolation
takes as input random numbers xi with 0 ~<xi< 1. These numbers are
used to generate "retention bits" that are 1 if x,. < Q and 0 otherwise. Each
retention bit determines whether a particular square of a given size is
retained.

Mandelbrot Percolation (dimension d, scale factor N, precision b)

Given: A nonnegative integer k, a designated lattice site s expressed in
unary with Isl = N ak, a retention factor Q (0 ~< Q < 1) with Q represented
by a b-bit binary number, 6 and a list of (N a k - 1) / (1 - N -a) random
numbers x~ with 0 ~< x; < 1 expressed as a b-bit number.

Problem: Is site s occupied by the Mandelbrot percolation process?

The instances of Mandelbrot percolation require that the dimension,
scale factor, and precision are all fixed inputs. In terms of the discussion of
Section 2.4 relating decision and sampling problems, Isl = m,
[-log2k-] + b = o, and b (N ak - 1)/(1 - N - d) ~ - r.7

A constant-time P-RAM algorithm for Mandelbrot percolation is
sketched below. First, retention bits for every square of each size are com-
puted in parallel by comparing the x,. to Q. Since b is a constant, this can
be done in constant time. The m retention bits for the individual sites are
placed in memory cells 1 to m. For each s i te j (1 <~j<<,m) the occupancy of
j is determined by taking the AND of all the retention bits of the k squares
containing j. To compute the AND, all processors reading a retention bit 0
write a value of 0 into global memory cell j. This step uses k m processors.
Note, cell j is 1 if site j is occupied and 0 otherwise. Next, the AriD of cell
j and the j t h place in the unary expression of s is computed; the result is
placed in cell j. Now, cell j is 1 if and only if site j is occupied and is the
selected site. Finally, the OR of cells 1 through m is taken (by having any
processor reading a 1 write to memory cell 1) to determine if the selected
site is occupied.

6 Our method of producing random numbers via coin tossing suggests this coding choice.
Such a scheme does not allow all possible rationals in the interval [0,1) to be represented.

7 This is not precise, as delimiters are also used in the encoding to make decoding easier.

Computational Complexity of Generating Random Fractals 1311

Fig. 2. A realization of diffusion-limited aggregation.

This P - R A M algori thm uses constant time and polynomial (kin) pro-
cessors so the following holds: s

Theorem 3.1. Mandelbrot percolation is in AC ~

3.2. D i f fus ion-L imi ted Aggregat ion

Diffusion-limited aggregation (4) is a cluster growth model where new
occupied sites are added to the growing cluster one at a time. Here we
illustrate D L A for a two-dimensional lattice with growth initiated along a
line. A r andom walker is started at a r andom position along the top edge
of an L • L square lattice. The walker moves until it is a nearest neighbor
of an existing occupied site, at which point it joins the cluster. Initially, the
bo t tom edge of the lattice is considered occupied. If a walk fails to join the
cluster, hits the top boundary of the lattice, or is unable to move (goes off
the lattice or encounters a site that is occupied in its first move), it is dis-
carded. A new r andom walk is started as soon as the previous walk has
joined the cluster or been discarded; the process continues until a cluster
of the desired size is grown. A realization of D L A is shown in Fig. 2.

A natural decision problem associated with the dynamics of diffusion-
limited aggregation is defined below.

Diffusion Limited Aggregation (dimension d)
Given: Tl]ree positive integers L, M~ and M2, a designated site s

expressed in unary with Isl = L d, and a list of r andom bits specifying M1
walk trajectories each of length M2 defined by a starting point on the top

s Technically, we have only been able to show Mandelbrot percolation is in nonuniform AC ~
however, we believe that the problem is, in fact, in uniform AC ~

1312 Machta and Greenlaw

edge of the lattice together with a list of directions of motion (e.g., N, S,
E, and W for two dimensions).

Problem: Is site s occupied by the aggregation process?

The proof that DLA is P-complete proceeds by a reduction from a
variant of the planar NOR circuit value problem. The reduction has a
similar flavor to the proof that a closely related fluid invasion problem is
P-complete, (5~ although there seems to be no way to make use of that proof
directly.

T h e o r e m 3.2. Diffusion-limited aggregation is P-complete.

Proof Sketch. The idea is to prescribe a sequence of walks capable
of carrying out the evaluation of a modified (but still P-complete) version
of the planar NOR circuit value problem. In this version of CVP the NOR
gates have a fan-in and fan-out of two. For P-completeness we also allow
single input OR gates with fan-out restricted to at most two. The circuit
encoding requires that the gates are numbered in topological order and
arranged in levels. The encoding specifies a planar layout of the circuit with
gates being located at grid points. Finally, the circuit is required to be syn-
chronous. That is, each gate receives its inputs only from gates on the
immediately preceding level. Gates at level one are the only gates that are
allowed to have direct circuit inputs. It can be shown using techniques
similar to those described in ref. 14 that this version of CVP is P-complete.

The walks to simulate the circuit are chosen so that the cluster grows
along linear paths of sites and bonds that play the role of wires connecting
gates. A wire carries the value TRUE if the cluster grows along it. Wires that
remain unoccupied carry the value FALSE. The gates themselves are
represented by locations where wires meet and several parts of the growing
cluster interact. Below we describe how logical values are propagated along
wires and how NOR and OR gates are implemented.

Logical values are propagated as follows. Each wire is realized by a
preassigned sequence of walks, one walk for each site along the wire. These
walks start from the upper boundary and move to successive locations
along the wire. Each walk moves to its assigned site along the wire and, if
the value of the wire is TRUE, it sticks there. Each walk reverses its path
after reaching its assigned site. In this way if the wire carries the value
FALSE, the walk returns to the upper boundary and is discarded. For exam-
ple, the first walk creating the output wire for the gate shown in Fig. 3
arrives at site d from above. If c is occupied, this walk sticks at d and the
cluster begins to grow along the output wire. If c is not occupied, the walk
turns around and retraces its steps back to the upper boundary, where it
is discarded. Thus the cluster grows along the output if site c is occupied.

Computational Complexity of Generating Random Fractals 1313

ou tpu t

- - - - ~ o - : o - o ~-

t t
input 1 input 2

power

Fig. 3. Gadget for a NOR gate. Filled circles and connecting bold lines show the two input
wires, the output wire, and the power wire. The dashed line shows the path of the walk that
evaluates the gate. This walk terminates on site a, b or e.

It is straightforward to have the output wire split into two separate wires.
These then become the inputs to other gates. Note that a larger fan-out
could be supported; however, the details of the proof become more
involved.

The simulation of planar NOR CVP by DLA is simpler in three or
more dimensions than in two dimensions. We first discuss the simpler case
and then consider the additional technicalities associated with two-dimen-
sional DLA.

A NOR gadget is shown in Fig. 3. The solid lines and circles represent
the input wires, the output wire, and the "power" wire. The power wire
always carries the value TRUE and its purpose is to provide a growing tip
for the output if the gate evaluates to TRUE. The dashed line represents a
walk that will stick at one of the three open circles labeled a, b or e. The
dashed walk evaluates the gate and so must not occur until the input and
power wires have been grown to completion. Suppose that input 1 is TRUE,
SO that the corresponding segment of wire is occupied. Then the trajectory
sticks at a. If input 1 is VALSE but input 2 is TRUE, the dashed walk sticks
at b. Finally,. if both inputs are FALSE then the walk sticks at c. The
occupancy of site e records the output of the gate.

The single input OR is simply a way to pass logical values through
levels and is trivially implemented as a single wire for three and higher
dimensional lattices. Also, for three and higher dimensions each NOR gate
may be separately supplied with its own power wire. For example, each

822/82/5-6-7

1314 Machta and Greenlaw

gate has a "column" dedicated to its power wire. When the wire reaches the
appropriate height, it is routed horizontally to the desired gate. However,
for two-dimensional D L A there is an additional complication in arranging
to have the power wire arrive at each gate without interfering with the
wires that carry truth values. To accomplish this we use a single power wire
for the entire circuit. It is "snaked" through the gates level by level. See the
power wire in the example shown in Fig. 6; this example is discussed
further later.

Figure 4 shows the implementation of a single input OR gate in two
dimensions. Effectively, it shows how to cross the power wire (running
toward the left) over a logical wire (running vertically). First, the logical
wire is grown to site 1. Next the power wire is grown as far as the
rightmost solid circle in the figure. The walk represented by the dashed line
on the right sticks at a if the logical wire is TRtrE and sticks at b if the logi-
cal wire is FALSE. Similarly, the walk represented by the dashed line on the
left sticks at e if the logical wire is TRtr~. and sticks at d if the logical wire
is FALSE. Finally, the logical wire may continue to grow vertically and the
power wire may continue to grow to the left without interfering with one
another. In this way a single input OR is simulated.

In two dimensions it is also necessary to have the power wire cross
through a NOR gate. This can be done as shown in Fig. 5. In this figure the
path of the power wire and the walks that bring particles to the wire are
numbered and shown as dashed lines. Recall that exactly one of the sites
a, b or c is occupied during the evaluation of the gate. If the output is TRUE

o u t p u t

c 6 1 o a
I I

~__~__i__.aO 6 b -

t
p o w e r

input

Fig. 4. Gadget for a single input OR gate (effectively crossing a power wire and a logical
wire). The logical wire is grown to site 1, then the two dashed walks carry the power wire
across the junction, sticking at a and c respectively, if the logical wire is TRU~ or at b and d
respectively, if the logical wire is FALSE.

Computational Complexity of Generating Random Fractals 1315

o u t

0

21D---10 l

7qi_._60 5qi no .3 o dq

----8-0 a 0 b 0

t t
i n p u t 1 i n p u t 2

9u t

p o w e r

Fig. 5. Passing the power wire through a r~oa gate after its evaluation. The growth of the
wire follows the numbered sites where the first occupied site is either 1, 3 or 6, depending on
whether e, h or a is occupied.

C)

Fig. 6. Layout of NOR (solid circles) and single input oR gates (open circles) in levels with
the power wire (thin line) traversing the gates in the order in which they are evaluated.

1316 Machta and Greenlaw

and c is occupied, the power wire grows along the full path 1-8. If instead
b is occupied, sites 1 and 2 are skipped and growth starts at 3. In this case
the walks that go to 1 and 2 turn around there and return to the upper
boundary, where they are discarded. Finally, if site a is occupied, then
growth of the power wire starts at 6. Thus after helping with the evaluation
of a NOR gate, the power wire may be passed through,

In two dimensions a single power wire traverses all the gates in the
sequence in which they would be evaluated in topological order. This
requires that the gates be arranged in levels as shown in the example in
Fig. 6. The thick lines are circuit wires, the filled circles are NOR gates, and
the open circles are single input OR gates. The power wire traverses the
gates one level at a time. Gates are evaluated from bottom to top and level
by level along the path of the power wire. The lower edge of the lattice is
used as a source for TRUE inputs to gates. At each gate the power and input
wires arrive first, then the gate is evaluated, and finally the power wire is
continued to the next gate. After an entire level has been simulated, outputs
are grown to the succeeding level. The routing between levels can be
accomplished by "spreading" the circuit out on the lattice and then allocat-
ing a couple of horizontal channels to each output of a gate. An output will
be grown upward to its designated channel, grown horizontally underneath
its appropriate gate, and then grown upward to serve as an input. The
planarity of the original circuit guarantees that there will be no interference
of walks during this routing.

The reduction described above shows that the special instance of CVP
we constructed is faithfully evaluated by the growth of the DLA cluster.
Furthermore, it is an NC reduction. The key point is that the choice of
paths for the walks is independent of the evaluation of the circuit. The full
layout of the walks is given globally by the planar layout of the original
circuit as outlined above and locally by Figs. 3-5. All calculations required
to compute these walks can be performed in NC.

3.3. Metropol is Dynamics for the Ising Model

Configurations of the Ising model are defined by spin variables o- i on
a lattice where each spin may take the value - 1 or + 1, The conventional
way to obtain equilibrium states of the Ising model is via the Metropolis
Monte Carlo method. One implementation of this method is as follows; at
each step of the algorithm a site i is chosen at random and the energy
change AE~, for flipping the spin at this site is computed. The energy
change is given by

AE,=2Ja, ~ (r j (1)
(i , j)

Computational Complexity of Generating Random Fractals 1317

where the summation is over nearest neighbors of site i and J is the coupl-
ing energy. If AEi <~ 0 the spin is "flipped" (tri ~ - try), whereas if AE~ > O,
the spin is flipped with probability e -~E~/r, where T is the temperature.
After this procedure has been iterated sufficiently many times, the resulting
probability distribution for the spin configurations is close to the equi-
librium state.

Metropolis dynamics is governed by a random list of sites and, for
each site in the list, a random number x; with 0 ~< x~ < 1 such that the site
is flipped if x~<<.e -'Je~/r, we can define the following natural decision
problem for Metropolis dynamics.

Metropolis Dynamics (dimension d)

Given: A positive integer L, an initial configuration of L d spins { ai}
with t r ~ e { - 1 , + 1}, a temperature variable Q = e -4J/r where Q is
expressed as a b-bit binary number, a designated site s expressed in unary
with Isl = L d, a list of M sites, and a list of M random numbers xi with
0 ~< xi < 1 expressed as a db-bit number.

Problem: Is as = + 1 after running the Metropolis algorithm?

Given the random numbers x~, we can assign flip variables,
g; e {0 d}, to each site i. For example, in three dimensions the flip
variables are defined by the inequalities

g j = 0 if O<.xi<~Q 3

gi = 1 if 0 3 < xi ~< Q2

g ; = 2 if Q2<xi<~Q

g ; = 3 if Q < x ~ < l

If a site k is chosen for a possible flip at step i and AEk/4J ~< 3 -- g;, then
the flip is carried out; otherwise, the spin is not changed. In other words,
a chosen spin i will flip at step j if it has g; or more neighbors of the
opposite sign. It is clear that the Metropolis decision problem can be NC
reduced to a version in which the random input is expressed as a list of flip
variables; it is this variant of the problem that we show is P-complete.

Theorem 3.3. Metropolis dynamics is P-complete for d greater
than or equal to 3.

Proof Sketch The Metropolis problem is proved P-complete by a
reduction from monotone CVP. The circuit is first "embedded" in a three-
dimensional lattice. The AND and OR gates are represented by sites and
wires connecting gates by chains of sites and bonds. For a circuit having

1318 Machta and Greenlaw

N edges, it can be shown that such an embedding may be carried out in
NC. Initially, all spins on the lattice are - 1. Logical values are represented
by spin values with + 1 (- 1) meaning TRUE (FALSE). Logical values are
propagated along wires by the following device: spins along the wire are
sequentially chosen for flipping and assigned the flip variable 1. If the
predecessor spin along the wire is + 1, the current spin will flip to + 1, but
if the predecessor spin along the wire is - 1 , the flip is rejected. Thus, once
initiated, logical values propagate along wires. Wires must always be
separated by one or more lattice spacings except where they meet at gates.
Sites representing gates have two input wires and two output wires. After
all sites along the input wires have taken their logical values, the gate is
ready for evaluation. Gates are assigned the flip variable 2 (1) for an AND
(OR) gate. Thus, if at least one input is TRUE, an OR gate registers TRUE,
while both inputs must be TRUE for an AND gate to register TRUE. This NC
reduction shows that we can simulate an arbitrary monotone circuit using
Metropolis dynamics in three or more dimensions. Therefore, the
Metropolis dynamics problem is P-complete.

Note that the planar monotone circuit value problem is in NC; see ref.
14 for a list of references regarding this problem. So, our proof does not
show that the two-dimensional Metropolis problem is P-complete. We
have been unsuccessful in our attempts to implement a NOT gate within the
framework of Metropolis dynamics.

The construction in Theorem 3.3 relies on a special ordering of the
sites chosen for flipping. However, we can easily extend the proof to updat-
ing schemes in which sweeps through the lattice are performed in a fixed
order. For example, consider the case of parallel updating where first the
odd sublattice is flipped all at once and then the even sublattice. The
problem statement is slightly different here, since now at each time step flip
variables are assigned to half the sites in the lattice. It is easy to keep sites
inactive by assigning them flip variables 3. Sites are assigned flip variables
I or 2 as in the above construction at the times they are to be evaluated.

3.4. Cluster Dynamics for the Ising M o d e l

Cluster flipping algorithms due to Wolff t28) and Swendsen and
Wang t29) are very efficient methods for generating equilibrium states of the
Ising model near criticality. In this section we show that natural decision
problems associated with the Wolff and Swendsen-Wang algorithms are
P-complete.

We illustrate the Wolff algorithm on an L x L square lattice. The
starting point is a configuration of spins {aj}. Next the bonds of the lattice

Computational Complexity of Generating Random Fractals 1319

are independently occupied with probability p as in bond percolation.
The occupation parameter is related to the temperature T according to
p = 1 - Q with Q = e-Z~/r and J the coupling energy between neighboring
spins. A site u on the lattice is chosen at random and a cluster is grown
from this site. A site v is in the cluster grown from u if there is a path from
u to v such that all the bonds along the path are occupied and all the spins
along the path including tro are equal to a, . The cluster of spins defined in
this way is "flipped" (tr ~ - cr for each cr in the cluster), which yields a new
spin configuration. The procedure is iterated M times. If the temperature T
is chosen to be the critical temperature and if M is sufficiently large, the
final configuration of spins is close to the equilibrium Ising critical point.
At the Ising critical temperature, the clusters defined by the algorithm are
critical droplets (3~ with Hausdorf dimension D n equal to 15/8.

The Swendsen-Wang algorithm is very similar to the Wolff algorithm
except that in each step of the algorithm all connected clusters defined by
the occupied bonds are identified. All sites of each cluster are assigned the
same spin value. The spin values for each cluster are determined indepen-
dently by a fair coin toss.

For each iteration of the Wolff or Swendsen-Wang algorithm, every
bond of the lattice is occupied with probability p equal to 1 - Q. To imple-
ment this we utilize random numbers x U with 0 ~< x o. < 1 for each nearest
neighbor pair (/j). The bond (tj) is occupied if x o. is greater than Q. At each
time step a cluster is grown from the starting point according to the
occupation variables and the current spin configuration as described above.
This cluster is flipped and the procedure repeated M times. We can define
the following natural problem based on Wolff dynamics.

Wolff Dynamics (dimension d)

Given: A positive integer L, an initial configuration of L a, spins {a;}
with a~e { - 1 , +1}, a temperature variable Q = e -~ / r , where Q is
expressed as a b-bit binary number, a designated site s expressed in unary
with Isl = L ~, a list of M sites, and d M L a random numbers x U with
0 ~< x U < 1 expressed as a b-bit number.

Problem: Is as = + 1 after running the Wolff algorithm?

Given tl'le random numbers xo., we can assign bond occupation
variables b o, such that b,j= 0 if xo.<~ Q and bg= 1 otherwise. Bonds are
counted as occupied if b U = 1. It is clear that the Wolff decision problem
can be N C reduced to a version in which the random input is given as the
b o. instead of the x;j. It is this version that we show is P-complete using a
reduction from the planar NOR circuit value problem.

1320 Machta and Greenlaw

T h e o r e m 3.4. Wolff dynamics is P-complete.

Proof Idea The reduction is best illustrated by a simple example. We
sketch it for the case d equals two. Consider the planar circuit shown in
Fig. 7 with three inputs and three NOR gates. The evaluation of this circuit
can be reduced to the Wolff problem shown in Fig. 8. The lower case letters
indicate occupied bonds and time steps that are arranged in alphabetical
order. All bonds labeled a are occupied only during step 1, all bonds
labeled b are occupied only during step 2, and so on. Bonds that are not
explicitly shown are never occupied. All spins on the lattice originally have
the value + 1 except those that are labeled FALSE. A -I-1 spin represents
TRUE and vice versa. Numbers label initiation sites for cluster growth.
Cluster growth is initiated at gates and logical constants. Site 1 initiates the
cluster growth at time step 1 and represents the TRUE input to the circuit;
site 2 initiates growth at time step 2 and so on. The first cluster propagates
as far as site 4 and both sites 1 and 4 (and the intermediate site) are flipped
to - 1. Site 2 initiates the next cluster, which does not propagate. Site 2 is
flipped to -t-1. The cluster initiated at 3 does not propagate, so that at the
beginning of time step 4 site 4 is in the FALSE state; the first gate has been
properly evaluated. At time step 4 site 4 flips, but nothing else happens; the
second gate properly evaluates to TRUE. At time step 5 a cluster propagates
from site 5 to the output gate that is flipped to - 1 . The output of the cir-
cuit is FALSE as it should be.

TRUE FALSE FALSE

Fig. 7. A simple planar NOR circuit with three inputs and three gates used to illustrate
Theorem 3.4.

Computational Complexity of Generating Random Fractals 1321

A

d
q

d
q

d
q

d

TRUE FALSE

d , d . d , d , d
v v - - w

A A

e] ' e - e

d I 5 c

C

C

C

3
FALSE

C e

Fig. 8. The Wolff problem that simulates the NOR circuit. Numbered sites represent gates and
logical constants. Bonds with the same letter are occupied during the same time step, bonds
a during step 1, bonds b during step 2, and so on.

More generally, a NOR gate is represented by spins, and wires connect-
ing gates are represented by paths of bonds and spins. All of the bonds in
a wire are occupied at the time step during which the wire transmits its
logical value. If the logical value is TRUE, a cluster of up spins is propagated
along the wire and the output end of the wire is flipped to FALSE if this has
not yet occurred. A gate transmits its value by initiation of a cluster and
the output of a gate can be read off as soon as all of its predecessors have
transmitted their values. Note that a fan-out higher than two may easily be
supported. Sites representing gates and logical constants must not be
nearest neighbors. It is clear that the reduction of the circuit to Wolff
dynamics can be carried out locally and is an NC reduction. Since planar
NOR CVP is P-complete, so is the Wolff dynamics problem.

Next we turn our attention to a natural decision problem associated
with the Swendsen-Wang algorithm. The problem statement requires ran-
dom "bits" c; equal to _+ l, to be used to determine the spins in the clusters.
Sites are given a conventional ordering. Connected clusters defined by Q
and the variables x o. are labeled by the lowest ordered site l in the duster
and all the spins in the cluster are assigned the value ct.

Swendsen-Wang Dynamics (dimension d)

Given: A positive integer L, an initial configuration of L d spins {tri}
with t r l e { - l , + l } , a temperature variable Q = e -~/r , where Q is
expressed as a b-bit binary number, a designated site s expressed in unary

1322 Machta and Greenlaw

with Is[= L a, a number of iterations M, a list of dAIL d random numbers
x u with 0 ~ x,j < 1 expressed as a b-bit number, and a list of M L '~ random
bits c~.

Problem: Is tx s = + 1 after running the Swendsen-Wang algorithm?

Theorem 3.5. Swendsen-Wang dynamics is P-complete.

P r o o f / d e a The proof is similar to that for the Wolff problem and
consists of a reduction from planar NOR CVP. Here again a value of d
equal to two suffices for the reduction. Consider a two-dimensional lattice
and suppose that the conventional ordering of sites on the lattice is from
left to right and then from bot tom to top. The occupation variables b u are
chosen the same as for the reduction to the Wolff problem. The cluster spin
variables ci are - 1 for gates and TRtrE inputs at the time they transmit
their values and + 1 for all other sites and all other times.

For both Wolff and Swendsen-Wang dynamics, a single iteration of
the algorithm can be accomplished in polylogarithmic parallel time using
a polynomial number of processors. This is because the most complex step
is the identification of a connected component(s), which can be carried out
by a standard NC algorithm. (33) More specifically, if the number of itera-
tions M is set to a constant in the statement of either the Wolff problem
or the Swendsen-Wang problem, the resulting decision problem is in NC.
For the Metropolis algorithm, an even stronger result holds. If M equals
a constant, the Metropolis decision problem is in AC ~ These conclusions
are not in conflict with the P-completeness proofs that rely on setting M
comparable to the size of the Boolean circuit being simulated. The P-com-
pleteness results show that a polynomial (in the system size) number of
iterations of these algorithms cannot be compressed into a polylogarithmic
number of parallel steps unless NC = P.

4. D I S C U S S I O N

4.1. S u m m a r y of Results

We have studied the computational complexity of natural decision
problems associated with several models in statistical physics. Our results
can be summarized as follows:

1. Mandelbrot percolation is in AC ~ (Theorem 3.1).

2. Diffusion limited aggregation is P-complete (Theorem 3.2).

3. Metropolis dynamics for the Ising model with d~> 3 is P-complete
(Theorem 3.3).

Computational Complexity of Generating Random Fractals 1323

4. Wolff dynamics for the Ising model is P-complete (Theorem 3.4).

5. Swendsen-Wang dynamics for the Ising model is P-complete
(Theorem 3.5).

4.2. Scope of the Results

It is important to understand the limitations of the P-completeness
results for DLA and the variants of Ising dynamics. Suppose we accept the
hypothesis from complexity theory that NC q: P. In this case the particular
dynamics discussed here for generating DLA clusters or equilibrium Ising
configurations are inherently sequential and cannot be efficiently simulated
in parallel. There are other ways to generate (approximate) equilibrium
states of the Ising model or DLA clusters; our results do not imply that
these ways are associated with P-complete problems. However, it was pre-
viously shown 15~ that a second method of producing DLA clusters is also
P-complete. It seems plausible that there are no poly-logarithmic time
methods for sampling the DLA distribution. On the other hand, the jury
remains out on whether it is possible to sample from an approximation to
the equilibrium critical distribution for spin models in polylogarithmic
time. It would be of great interest to obtain results on the difficulty of
sampling physically interesting distributions.

A second limitation of the P-completeness statements is that they are
worst case rather than average case results. For example, assuming that
NC :/: P, we know that there exist instances of the DLA problem that can-
not be solved in polylogarithmic time, although we do not know whether
these "hard" instances are typical or very rare. Indeed, the instances used
in the P-completeness proofs are atypical. If the "hard" instances are suf-
ficiently rare, we may be able to sample the distribution in poly-logarithmic
time on average. The theory of average case complexity ~34"35~ addresses
questions of this kind. Unfortunately, it is not easy to see how to apply this
theory to the present problems.

4.3. Parallel complexity and Critical Slowing Down

Away from a critical point, the equilibration time of real systems
without macroscopic inhomogeneities is independent of system size.
Similarly, the Metropolis algorithm can generate good approximations to
equilibrium configurations of the Ising model away from the critical point
in constant parallel time since each sweep can be done in constant time and
the number of sweeps is independent of the system size. The associated
decision problem is in AC ~

1324 Machta and Greenlaw

Equilibration of many real systems becomes increasingly slow near
critical points. Typically the equilibration time at a critical point scales as
L z, where L is the system size and z is the dynamic exponent. This
phenomenon known as critical slowing down, also afflicts most Monte
Carlo methods used to sample spin configurations at critical points. The
dynamic exponent z is customarily defined for Monte Carlo dynamics if
relaxation to equilibrium requires flipping L z § a spins. It is often said that
an algorithm suffers no critical slowing down if z = 0 (with possible
logarithmic corrections). This is not a satisfactory general definition of
"absence of critical slowing down." For example, imagine an algorithm for
which each spin is flipped only once but an enormous computation is
required to decide whether or not to effect the flip. Alternatively, one might
propose that "absence of critical slowing down" means that the sequential
time (computational work) is o(L a+') for any E > 0. This definition is both
machine dependent and unnecessarily stringent.

We propose that "absence of critical slowing down" should be iden-
tified with the class NC. A sampling method suffers no critical slowing
down if it can be run in polylogarithmic time on a P-RAM with polyno-
mially many processors. This definition is, for the most part, in agreement
with the z = 0 definition. If z > 0 for the Monte Carlo methods studied here,
the P-completeness results show that there is critical slowing down accord-
ing to the new definition. On the other hand, if z = 0 for either the
Metropolis or Swendsen-Wang algorithms, there is no critical slowing
down since a single sweep through the lattice for either of these algorithms
can be done efficiently in parallel and z = 0 implies a poly-logarithmic num-
ber of sweeps. In contrast, the Wolff algorithm suffers critical slowing down
even for z = 0 according to the new definition. The reason is that the
average size of Wolff clusters scales as L ~'/~, where y is the susceptibility
exponent and v the correlation length exponent. Thus, even if z = 0, one
typically requires L a-y/~ iterations of the algorithm to reach equilibrium.
The P-completeness result shows that carrying out these iterations can
almost certainly not be done in poly-logarithmic time using a polynomial
number of processors.

4.4. F ina l R e m a r k s

In this and two previous papers (5" 6) we have investigated the parallel
computational complexity of a variety of models in statistical physics. We
have claimed that parallel complexity provides statistical physics with a
robust and sharply defined measure that reflects some of our more intuitive
notions of complexity. We have classified a wide variety of models into
three broad classes: those that require constant parallel time to simulate,

Computational Complexity of Generating Random Fractals 1325

those that require polylogarithmic time, and those that require polynomial
time. In each case we allow a polynomial number of processors. Even
among models that generate random fractal patterns, we find repre-
sentatives in each of these classes. Comparisons between members of dif-
ferent classes reveal that models in the higher classes generally pose a more
difficult theoretical challenge. It would be extremely interesting to find
more precise correlations between computa t ional complexity and the
quantit ies conventionally studied in statistical physics.

AC K N O W L E D G M ENTS

J.M. is supported in part by Nat ional Science Founda t ion grant
DMR-9311580, and R.G. by Nat ional Science Founda t ion grant CCR-
9209184. We thank David Barrington for useful discussions.

REFERENCES

I. C. H. Bennett, How to define complexity in physics, and why, in Complexio,, Entropy and
the Physics of blformation, W. H. Zurek, ed. (Addison-Wesley, Reading, Massachusetts,
1990).

2. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1983).
3. J. T. Chayes, L. Chayes, and R. Durrett, Connectivity properties of Mandelbrot's percola-

tion process, Prob. Theory Related Fields 77:307 (1988).
4. T. A. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenom-

enon, Phys. Reo. Lett. 47:1400 (1981).
5. J. Machta, The computational complexity of pattern formation, J. Star. Phys. 170:949

(1993).
6. J. Machta and R. Greenlaw, The parallel complexity of growth models, J. Stat. Phys.

77:755 (1994).
7. F. Barahona, On the computational complexity of Ising spin glass models, J. Phys'. A:

Math. Gen. 15:3241 (1982).
8. J. Machta, The computational complexity of the self-avoiding walk on random lattices,

J. Phys. A: Math. Gen. 25:521 (1992).
9. J. C. Angles d'Auriac, M. Preissmann, and R. Rammal, The random field /sing model:

Algorithmic complexity and phase transitions, J. Phys. (Paris) 46:L173 (1985).
10. D. J. A. Welsh, The computational complexity of some classical problems from statistical

physics, in Disorder in Physical Systems, G. R. Grimmett and D. J. A. Welsh, eds. (Oxford
University Press, Oxford, 1990), p. 307.

11. M. Jerrum and A. Sinclair, Polynomial-time approximation algorithms for the Ising
model, SlAM J. Computfl~g 22(5):1087 (1993).

12. I. E. Hopcroft and J. D. Ullman, bltroduction to Automata Theory, Languages, and
Computation Addison-Wesley, Reading, Massachusetts, (1979).

13. H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation (Prentice-
Hall, Englewood Cliffs, New Jersey, 1981).

14. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel Computation:
P-Completeness Theory (Oxford University Press, Oxford, 1995).

1326 Machta and Greenlaw

15. D. S. Johnson, A catalog of complexity classes, in Handbook of Theoretical Computer
Science, Vohune A: Algorithms and Complexity, J. van Leeuwman, ed. (MIT Press/Elsevier,
1990), p. 68.

16. M. R. Garey and D. S. Johnson, Computers and hltractability: A Guide to the Theory of
NP-Completeness (Freeman, New York, 1979).

17. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms (Addison-Wesley, Reading, Massachusetts, 1974).

18. F. E. Fich, The complexity of computation on the parallel random access machine, in
Synthesis of Parallel Algorithms, J. H. Reif, ed. (Morgan Kaufman, San Marco, California,
1993), Chapter 20, pp. 843-899.

19. R. M. Karp and V. Ramachandran, Parallel algorithms for shared-memory machines, in
Handbook of Theoretical Computer Science, vohone A: Algorithms and Complexity, Jan
van Leeuwman, ed. (MIT Press/Elsevier, 1990), Chapter 17, pp. 869-941.

20. R. E. Ladner, The circuit value problem is log space complete for P, SIGACT News 7:18
(1975).

21. E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor. Phys. 21:219 (1982).
22. J. Von Neumann, Theory of Self-Reproducing Automata (University of Illinois Press,

Urbana, 1966).
23. J. Machta, Y. S. Choi, A. Lucke, T. Schweizer, and L. V. Chayes. Invaded cluster algo-

rithm for equilibrium critical points, Phys. Rev. Lett. 75:2792 (1995).
24. H. Venkateswaran, Circuit definitions of nondeterministic complexity classes, SIAM J.

Computing 21:655 (1992).
25. J. Machta, Phase transitions in fractal porous media, Phys. Rev. Lett. 66:169 (1991).
26. J. T. Chayes, L. Chayes, and J. Machta, Phase diagram and correlation length bounds for

Mandelbrot aerogels, J. Phys. A: Math. Gen. 26:4249 (1993).
27. L. Chayes and J. Machta, On the behavior of the surface tension for spin-systems in a

correlated porous medium, J. Stat. Phys. 79:117 (1995).
28. U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62:361

(1989).
29. R. H. Swendsen and J.-S. Wang, Nonuniversal critical dynamics in Monte Carlo simula-

tions, Phys. Rev. Lett. 58:86 (1987).
30. M. E. Fisher, The theory of condensation and the critical point, Physics 3:255 (1967).
31. C. M. Fortuin and P. M. Kasteleyn, On the random-cluster model, Physica 57:536 (1972).
32. A. Coniglio and W. Klein, Clusters and Ising critical droplets: A renormalisation group

approach, J Phys. A: Math. Gen. 13:2775 (1980).
33. A. Gibbons and W. Rytter, Efficient Parallel Algorithms (Cambridge University Press,

Cambridge, 1988).
34. L. A. Levin, Average case complete problems, SIAM J. Comput#1g 15:285 (1986).
35. S. Ben-David, B. Chor, O. Goldreich, and M. Luby, On the theory of average ease

complexity, J. Computer Syst. So. 44:193 (1992).

